
International Journal of Heat and Mass Transfer 48 (2005) 1096–1106

www.elsevier.com/locate/ijhmt
Sudden or smooth transitions in porous media
natural convection

Johnathan J. Vadasz a,*, Joseph E.A. Roy-Aikins a, Peter Vadasz b,1

a Department of Mechanical Engineering, University of KZ-Natal, Private Bag X54001, Durban 4000, South Africa
b Department of Mechanical Engineering, Northern Arizona University, P.O. Box 15600, Flagstaff, AZ 86011-5600, USA

Received 29 March 2004; received in revised form 15 September 2004

Available online 8 December 2004
Abstract

In porous media isothermal flow a transition from the Darcy regime, via an inertia dominated regime, towards tur-

bulence is anticipated. In porous medium natural convection the transition to turbulence follows a different route. The

first transition from a motionless-conduction regime to steady natural convection is followed by a direct second tran-

sition to a non-steady (time dependent) and non-periodic regime (referred to as weak turbulent), prior to the amplitude

of the convection reaching such large values as to involve inertial, non-Darcy effects. The latter is due to an additional

non-linear interaction that appears in natural convection as a result of the coupling between the equations governing

the fluid flow and the energy equation. The present paper deals with identifying whether the transitions are sudden or

possibly smooth. The latter is accomplished by using a truncated Galerkin representation of the natural convection

problem in a porous layer heated from below (an extended Darcy model) leading to the familiar Lorenz equations

for the evolution of the convection amplitudes with time. Two different formulations (named the ‘‘original’’ and the

‘‘modified’’ systems) are being used in an anticipation to obtaining a smooth transition in the form of an imperfect

bifurcation from the ‘‘modified’’ system formulation. The results show that the transition remains sudden and the accu-

racy of the ‘‘modified’’ system results is being tested in comparison with the ‘‘original’’ system showing a sufficiently

high degree of accuracy.
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1. Introduction

In porous medium natural convection the transition

to turbulence follows the following route. The first tran-
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sition is from a motionless-conduction regime to steady

natural convection. This is followed by a direct second

transition to a non-steady (time dependent) and non-

periodic regime (referred to as weak turbulent), prior

to the amplitude of the convection reaching such large

values as to involve inertial, non-Darcy effects. The lat-

ter is due to an additional non-linear interaction that ap-

pears in natural convection as a result of the coupling

between the equations governing the fluid flow and the

energy equation.
ed.
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Nomenclature

Da Darcy number, defined by k�=H2
�

H
*

the height of the layer

H the front aspect ratio of the porous layer,

equals H
*
/L

*

k
*

permeability of the porous domain

L
*

the length of the porous layer

L reciprocal of the front aspect ratio, equals

1/H = L
*
/H

*

Mf ratio of the fluid and the porous domain

heat capacities

p reduced pressure (dimensionless).

Pr Prandtl number, equals m
*
/ae*

Ra porous media gravity related Rayleigh num-

ber, equals b
*
DTCg*H*

k
*
Mf/ae*m*

Ra0 critical Rayleigh number value for loss of

stability of the steady convection solution

R scaled Rayleigh number, equals Ra/4p2

R0 critical value of R for the loss of linear sta-

bility of the steady convection solution

r absolute value of the complex amplitude

r0 initial condition of r

t time

T dimensionless temperature, equals

(T
*
� TC)/(TH � TC).

TC coldest wall temperature

TH hottest wall temperature

u horizontal x component of the filtration

velocity

v horizontal y component of the filtration

velocity

w vertical component of the filtration velocity

x horizontal length co-ordinate

X amplitude of convection flow defined in Eq.

(6)

y horizontal width co-ordinate

Y amplitude of convection temperature

defined in Eq. (7)

z vertical co-ordinate

Z amplitude of convection defined in Eq. (7)

Greek symbols

a a parameter related to the time derivative

term in Darcy�s equation
ae

*
effective thermal diffusivity

b
*

thermal expansion coefficient

e asymptotic expansion parameter, see text

following Eq. (17)

/ porosity

v dimensionless group, equals /Pr/Da

m
*

fluid�s kinematic viscosity

l
*

fluid�s dynamic viscosity

w stream function

DTC characteristic temperature difference

s long time scale

h the phase of the complex amplitude

Subscripts

* dimensional values

t transitional values

cr critical values

Superscript
* complex conjugate
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Modeling the weak turbulent regime for natural con-

vection in a fluid saturated porous layer is known to be

extremely sensitive to initial conditions. The question of

compatibility of the initial conditions between the com-

putational and analytical (weak non-linear) solutions

arises in particular in connection with the prediction of

the transition point. Vadasz and Olek [1,2] demon-

strated by using a computational method of solution

(Adomian�s decomposition method [3–5]) that the

transition from steady to chaotic (weak-turbulent) con-

vection in porous media can be recovered from a trun-

cated Galerkin approximation which yields a system

that is equivalent to the familiar Lorenz equations (Lor-

enz [6], and Sparrow [7]). In particular it was noticed

that the transition to chaos occurs at a particular sub-

critical value of Rayleigh number. Here, the term

‘‘sub-critical’’ is used in the context of the transition

from steady convection to a non-periodic state, typically

referred to as chaotic, and the critical value of the Ray-
leigh number is the value at which this transition to

chaos is predicted by the linear stability analysis of the

convective steady state solutions. The problem that the

linear stability analysis reveals that the transition occurs

at Rayleigh number values substantially smaller than

those obtained by accurate numerical solutions (or by

experimental results of an equivalent system that is gov-

erned by the same set of Lorenz equations, Yuen and

Bau [8] and Wang et al. [9]) and in some cases at values

smaller by 50% was addressed by Vadasz [10]. The latter

showed that an analytical, weak non-linear, method of

solution to this problem, can provide accurate transition

values via a correction to the linear stability results. In

addition, Vadasz [10] revealed a mechanism for the well

known Hysteresis phenomenon in the transition from

steady to chaotic convection and backwards. The transi-

tion from the steady to the chaotic solution occurs via a

subcritical Hopf bifurcation (see Sparrow [7], Yuen and

Bau [8] and Wang et al. [9], Vadasz [10,11]) and is asso-
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ciated with a homoclinic explosion when the trajectory

which originally moves around one steady convective

solution (fixed point) departs towards the other fixed

point (trajectory here is used in the mathematical sense

and not the fluid mechanics sense of a particle trajec-

tory). In order for the analytical solution to provide re-

sults that are equivalent to the computational solution,

used by Vadasz and Olek [1,2], a compatibility condition

for their initial conditions needed to be imposed (see Va-

dasz [11]). This condition constrained the set of possible

initial conditions to a particular group that followed

some derived relationships. The application of this

method to evaluate the heat transfer coefficient in por-

ous media convection was presented by Vadasz [12]

and additional effects were considered by Vadasz

[13,14] and Vadasz and Olek [15]. Similar studies of

the corresponding convection problem in a pure fluid

(non-porous domain) were presented by Vadasz [16,17]

and in a rotating porous layer by Vadasz and Olek [18].

The present paper focuses on a different, although

equivalent formulation, of the problem in order to ob-

tain more insight into the form of the transition from

steady to weak turbulent convection. Analytical work

is combined here with computational results in order

to further the understanding of this transition. In the

first instance our aim here is to demonstrate the equiva-

lence between the two equivalent formulations of the

problem at hand and use it to investigate whether the

transition is sudden or smooth.
2. Problem formulation and reduced set of equations

A fluid saturated porous layer subject to gravity and

heated from below as presented in Fig. 1 is considered.

A Cartesian co-ordinate system is used such that the ver-

tical axis z is collinear with gravity, i.e. êg ¼ �êz. The
time derivative term is not neglected in Darcy�s equation
in order to investigate the effect of high frequencies

associated with small time scales on the results. Weak

turbulence is certainly linked to a wide spectrum of
Fig. 1. A fluid saturated porous layer heated from below.
frequencies from very low to extremely large. To capture

this effect one cannot disregard time derivative terms on

the grounds of a small coefficient only. The latter was

introduced and discussed by Vadasz [19], and adopted

by Straughan [20]. Other than that, Darcy�s law is as-

sumed to govern the fluid flow while the Boussinesq

approximation is applied for the effects of density varia-

tions. Under these conditions the following dimension-

less set of governing equations applies (see Pop et al.

[21] for the corresponding dimensional form excluding

the time derivative term in Eq. (2))

r � q ¼ 0 ð1Þ

1

v
o

ôt
þ 1

� �
q ¼ �rp þ RaT êz ð2Þ

oT
ôt

þ q � rT ¼ r2T ð3Þ

Eqs. (1)–(3) are presented in a dimensionless form.

The values ae*/H*
Mf, l

*
ae*/k*Mf, and DTC = (TH � TC)

are used to scale the filtration velocity components (u
*
,

v
*
, w

*
), pressure (p

*
), and temperature variations (T

*
�

TC), respectively, where ae* is the effective thermal diffu-

sivity, l
*
is fluid�s viscosity, k

*
is the permeability of the

porous matrix and Mf is the ratio between the heat

capacity of the fluid and the effective heat capacity of

the porous domain. The height of the layer H
*
was used

for scaling the variables x
*
, y

*
, z

*
and H 2

�=ae� for scaling

the time t
*
. Accordingly, x = x

*
/H

*
, y = y

*
/H

*
and

z = z
*
/H

*
, and t ¼ t�ae�=H 2

�. In Eq. (2) Ra is the gravity

related Darcy–Rayleigh number defined in the form

Ra = b
*
DTcg*H*

k
*
Mf/ae*m*, where b

*
is the thermal

expansion coefficient, g
*
is the gravity acceleration, /

is the porosity, Mf is a ratio between the heat capacity

of the fluid and the effective heat capacity of the porous

domain and m
*
is the kinematic viscosity of the fluid.

The time derivative term was included in Darcy�s
Eq. (2), where v is a dimensionless group which is de-

fined in the form v = /Pr/Da. In traditional applications

of transport phenomena in porous media typical values

of v are quite big, a fact that provides a justification for

the neglect of the time derivative term in Darcy�s equa-
tion. However, when wave phenomena are of interest

the time derivative term is expected to be included in or-

der to prevent the reduction of the order of the system in

the time domain.

As all the boundaries are rigid the solution must fol-

low the impermeability conditions there, i.e. q � ên ¼ 0

on the boundaries, where ên is a unit vector normal to

the boundary. The temperature boundary conditions

are T = 1 at z = 0, T = 0 at z = 1 and rT � ên ¼ 0 on

all other walls representing the insulation condition on

these walls.

For convective rolls having axes parallel to the

shorter dimension (i.e. y) v = 0, and the governing
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equations can be presented in terms of a stream function

defined by u = ow/oz and w = �ow/ox, which upon sub-

stitution into Eqs. (1) and (2) yields

1

v
o

ôt
þ 1

� �
o2w
ox2

þ o2w
oz2

� �
¼ �Ra

oT
ox

ð4Þ

oT
ôt

þ ow
oz

oT
ox

� ow
ox

oT
oz

¼ o
2T
ox2

þ o
2T
oz2

ð5Þ

where the boundary conditions for the stream function

are w = 0 on the horizontal boundaries. Here T is the

dimensionless temperature and t̂ is the dimensionless

time.

To obtain the complete solution to the non-linear

coupled system of partial differential Eqs. (4) and (5)

we represent the stream function and temperature in

the form

w ¼ � 2L
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2cðR� 1Þ

p
c

X ðtÞ sinðpxÞ sinðpzÞ ð6Þ

T ¼ 1� zþ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2cðR� 1Þ

p
pR

Y ðtÞ cosðpxÞ sinðpzÞ

� ðR� 1Þ
pR

ZðtÞ sinð2pzÞ ð7Þ

where R = c2Ra/p2 is the scaled Rayleigh number,

c = L2/(L2 + 1), L = L
*
/H

*
is the reciprocal of the layer�s

aspect ratio, and the time was rescaled in the form

t ¼ ðL2 þ 1Þp2 t̂=L2. This representation is equivalent to

a Galerkin expansion of the solution in both x and z

directions, truncated when i + j = 2, where i is the Galer-

kin summation index in the x direction and j is the

Galerkin summation index in the z direction. It may

be interesting to note that applying a weak non-linear

method of solution directly to Eqs. (4) and (5) produces

a solution that includes only the first spatial modes in

both w and T. Therefore the representation of the solu-

tion in the form (6) and (7) is an extension of the weak

non-linear solution by including one more spatial mode.

Substituting (6) and (7) into the Eqs. (4) and (5), multi-

plying the equations by the orthogonal eigenfunctions

corresponding to (4) and (5) and integrating them over

the domain, i.e.
R 1

0
dx

R 1

0
dzð�Þ, yields a set of three ordi-

nary differential equations for the time evolution of the

amplitudes in the form

_X ¼ aðY � X Þ ð8Þ

_Y ¼ RX � Y � ðR� 1ÞXZ ð9Þ

_Z ¼ 4cðXY � ZÞ ð10Þ

subject to the initial conditions X = X0, Y = Y0, Z = Z0,

where a = cv/p2, and the dots (Æ) denote time derivatives

d( )/dt. Eqs. (8)–(10) are equivalent to Lorenz equations

(Lorenz [6], Sparrow [7]), which are satisfied by the sta-
tionary (or fixed) point corresponding to the motionless-

conduction solution XS = YS = ZS = 0, by the stationary

points corresponding to the steady convective solutions

XS = YS = ± 1 and ZS = 1, and by chaotic solutions.

The linear stability of the fixed point associated with

the motionless solution (XS = YS = ZS = 0) is obtained

by investigating the growth or decay of small perturba-

tions around the motionless solution (XS = YS = ZS = 0)

that have the form ert. Their stability is therefore con-

trolled by the zeros of the following characteristic poly-

nomial equation for the eigenvalues, ri (i = 1, 2, 3)

ð4c þ rÞ½aR� ða þ rÞð1þ rÞ
 ¼ 0 ð11Þ

The first eigenvalue r1 = �4c is always negative be-

cause c = L2/(L2 + 1) > 0 causing the small perturba-

tions to decay. The other two eigenvalues are always

real and given by

r2 ¼
1

2
�ða þ 1Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða þ 1Þ2 þ 4aðR� 1Þ

q� �
ð12aÞ

r3 ¼
1

2
�ða þ 1Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða þ 1Þ2 þ 4aðR� 1Þ

q� �
ð12bÞ

Note from Eq. (12) that the eigenvalue r3 is also al-

ways negative because a = cv/p2 > 0, causing the pertur-

bations to decay. On the other hand the sign of r2

provides the stability condition for the motionless solu-

tion in the form r2 < 0 () R < 1, because a value of

R > 1 causes the term under the square-root in (12a)

to be larger than (a + 1)2 leading to the square brackets

and therefore r2 to become positive. A positive value of

r2 > 0 causes the perturbations to grow indicating the

instability of the motionless solution XS = YS = ZS = 0.

Alternatively, when R < 1 the term under the square-

root in (12a) is smaller than (a + 1)2 leading to the

square brackets and therefore r2 to be negative, result-

ing in the decay of the perturbation and therefore to a

stable motionless solution. Therefore the critical value

of R, where the motionless solution loses stability and

the steady convection solution (expressed by the other

two fixed points) takes over, is obtained as R = 1, which

for a porous layer of infinite horizontal extent (L !1)

being associated with c = limL!1[L2/(L2 + 1)] = 0.5,

corresponds to Racr = 4p2, recovering the familiar stabil-

ity condition of the Horton–Rodgers–Lapwood convec-

tion. A similar linear stability analysis of the steady

convection solutions XS = YS = ± 1 and ZS = 1, indi-

cates that the latter are stable when 1 < R < R0, where

R0 = a(a + 4c + 3)/(a � 4c � 1). One may conclude that

the motionless solution XS = YS = ZS = 0 is stable when

R < 1, the steady convective solutions XS = YS = ± 1

and ZS = 1 are stable when 1 < R < R0, and non-steady,

non-periodic solutions (chaotic) may appear for values

of R > R0. The transition from the steady to the chaotic

solution occurs via a subcritical Hopf bifurcation (see

Sparrow [7], Yuen and Bau [8], Wang et al. [9], Vadasz
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[10–12]) and is associated with a homoclinic explosion

when the trajectory that originally moves around one

steady convective solution (fixed point) departs towards

the other fixed point.

The problem formulation used here is slightly differ-

ent than Eqs. (8)–(10) although fully equivalent. It essen-

tially consists of introducing the initial conditions into

the equations by using the transformation

eX ¼ X � X 0; eY ¼ Y � Y 0; eZ ¼ Z � Z0 ð13Þ

which produces the following set of equations

_eX ¼ aðeY � eX Þ � aðY 0 � X 0Þ ð14Þ

_eY ¼ ½R� ðR� 1ÞZ0
eX � eY � ðR� 1ÞX 0
eZ

� ðR� 1ÞeX eZ � RX 0 � RY 0 � ðR� 1ÞX 0Z0 ð15Þ

_eZ ¼ 4cðeX eY � eZ þ X 0
eY þ Y 0

eX þ X 0Y 0 � Z0Þ ð16Þ

subject to the initial conditions eX 0 ¼ eY 0 ¼ eZ 0 ¼ 0.

The system of Eqs. (8)–(10) was solved computation-

ally via the Adomian decomposition method [3–5] and

its results were compared with the corresponding numer-

ical solution obtained from system (14)–(16) by applying

a fifth and sixth order Runge–Kutta–Verner method

from the IMSL Library (DIVPRK) [22]. In addition

both systems were solved analytically via the weak

non-linear method by using an asymptotic expansion

around the value of R = R0, i.e. around the point where

the convective fixed points loose stability in the linear

sense. The computational as well as the numerical results

indicate that the point of transition from steady to cha-

otic solution is detected at a sub-critical value of

Rt < R0, in some cases the transition occurs at values

of Rt as small as R0/2. The latter deviation is explained

by using the analytical weak non-linear method of solu-

tion to provide a correction to the linear stability results

in the form of an analytical closed form expression (see

Eq. (25) in what follows). It is therefore a major objec-

tive of this paper to use the analytical relationship for

this transition value of R = Rt, to be derived and pre-

sented in Eq. (25), and compare it with the correspond-

ing values obtained computationally. The anticipation

was to establish whether the perfect Hopf bifurcation

renders itself imperfect due to the introduction of the

initial conditions into the equations.
3. Analytical method of solution

The analytical solution to the problem is evaluated

via a weak non-linear analysis by using an expansion

around the point where the convective stationary solu-

tions loose linear stability. The stationary (fixed) points

of the system (8)–(10) are the convective solutions
XS = YS = ± 1, ZS = 1 and the motionless solution

XS = YS = ZS = 0 (referred to as the origin). The expan-

sion around the motionless stationary solution yields the

familiar results of a pitchfork bifurcation from a

motionless state to convection at R = 1. We expand

now the dependent variables around the convection sta-

tionary points in the form

½X ; Y ; Z
 ¼ ½X S; Y S; ZS
 þ e½X 1; Y 1; Z1

þ e2½X 2; Y 2; Z2
 þ e3½X 3; Y 3; Z3
 þ � � � ð17Þ

We also expand R in a finite series of the form R =

R0(1 + e2) which now defines the small expansion

parameter as e2 = (R � R0)/R0, where R0 is the value of

R where the stationary convective solutions lose their

stability in the linear sense (see Vadasz and Olek [1,2]).

Therefore the present weak non-linear analysis is ex-

pected to be restricted to initial conditions sufficiently

close to any one of the convective fixed points. Introduc-

ing a long time scale s = e2t and replacing the time deriv-

atives in Eqs. (8)–(10) with d/dt! d/dt + e2d/ds, yields a
hierarchy of ordinary differential equations at the differ-

ent orders. The solutions to order O(e) have the form:

X 1 ¼ a1errþir0t þ a�1e
rr�ir0 t þ a13er3t ð18Þ

Y 1 ¼ b1errþir0 t þ b�1e
rr�ir0t þ b13er3t ð19Þ

Z1 ¼ c1errþir0 t þ c�1e
rr�ir0 t þ c13er3t ð20Þ

where r1 = rr + ir0, r2 = rr � ir0 and r3 are the three

eigenvalues of the system (8)–(10) linearised around

R0. It turns out that the first two, r1 and r2 are a pair

of complex conjugate eigenvalues, while the third one

is real and negative, i.e. r3 < 0 and real. At marginal sta-

bility, i.e. at R = R0, the real part of the complex eigen-

values is zero. Therefore, at order O(e) one can set the

argument of the exponents in Eq. (18)–(20) to r1 = ir0

and r2 = �ir0, by substituting rr = 0. What typically fol-

lows when using the weak non-linear method of solution

is the neglect of the decaying term a13er3t from the solu-

tion. This term does not bring any contribution to the

post-transient solution. However, while indeed this term

vanishes at the post-transient state, its inclusion in the

solution becomes essential in order to provide a relation-

ship between the initial conditions in the analytical solu-

tion and the computational one. The coefficients a1ðsÞ;
a�1ðsÞ; b1ðsÞ; b�1ðsÞc1ðsÞ and c�1ðsÞ are allowed to vary over

the long time scale s. By substituting the solutions (15),

(19) and (20) into the linearised form of Eqs. (8)–(10),

that apply at order O(e) (see Vadasz [10] for details),

one obtains the following relationships between these

coefficients

b1 ¼
ða þ ir0Þ

a
a1; b�1 ¼

ða � ir0Þ
a

a�1;

b13 ¼
ðr3 þ aÞ

a
a13 ð21Þ



Fig. 2. Transitional sub-critical values of Rayleigh number in

terms of Rt/R0 as a function of the initial conditions r0.

Comparison between the analytical weak non-linear solution

expressed by Eq. (25) (–), and the numerical results (d).
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c1 ¼
r0½r0 � iða þ 1Þ


aðR0 � 1Þ a1;

c�1 ¼
r0½r0 þ iða þ 1Þ


aðR0 � 1Þ a�1;

c13 ¼
�r3½r3 þ a þ 1


aðR0 � 1Þ a13 ð22Þ

The values of r0, R0 and r3 corresponding to rr = 0

are also obtained in the form r2
0 ¼ 8acða þ 1Þ=ða�

4c � 1Þ, R0 = a(a + 4c + 3)/(a � 4c � 1) and r3 = �(a +

4c + 1).

A solvability condition is obtained at order O(e3) in
order to prevent terms of the form eir0t and e�ir0t on

the right hand side of the O(e3) equations to resonate

the homogeneous operator, hence forcing secular solu-

tions of the form teir0 t and te�ir0t that are not bounded

as t !1. Hence, the coefficients of these secular terms

must vanish, a requirement which provides a constraint

on the amplitudes at order O(e) in the form of an ampli-

tude equation

dr
dt

¼ s½n � r2
r ð23Þ

subject to the initial condition t = 0: r = r0, where the

O(e) complex amplitude was presented in the form

a ¼ ea1 ¼ reih a� ¼ ea�1 ¼ re�ih ð24Þ

with aa* = r2, s = u/b and n = e2/u, where u and b are

parameters that depend on the value of a. For a = 5, cor-

responding to v ffi 98.7 and consistent with the present

study u = �2.4, b = 0.403226 (the value of u was found

to be negative over a very wide band of a values that are

compatible with the Hopf bifurcation), and the follow-

ing critical values apply R0 = 25 and r0 ¼
ffiffiffiffiffi
60

p
. The

transient solution to Eq. (23) identifies the transition

from steady to weak-turbulent convection (see Vadasz

[10–12] for details) in terms of n and r20 in the form

r20 > n. Transforming the condition for this transition

to occur, from r20 > n, to the original physical parame-

ters of the system by substituting the definition of n
and e2 one can observe that there is a value of R < R0,

say Rt, beyond which the transition occurs, which can

be expressed in the form

Rt ¼ R0ð1� j u j r20Þ ð25Þ

where the minus sign and the absolute value of u appear

in order to show explicitly that u < 0. If R < Rt the solu-

tion decays, spiraling towards the corresponding fixed

point, at R = Rt we expect a solitary limit cycle solution,

and beyond this transitional value of R, i.e. R > Rt, the

solution moves away from this fixed point, towards a

possible chaotic solution. It is important to stress that

for any initial condition r20, which we choose, we can find

a value of R < R0 which satisfies Eq. (25). At that value

of R we expect to obtain a limit cycle solution and be-

yond it a possible chaotic solution.
Since in the computational/numerical solutions we

use as initial conditions X0, Y0 and Z0 while the analyt-

ical solution provides the transition point Rt in terms of

r0 a compatibility relationship between X0, Y0 and Z0

and r0 is required (Vadasz [11]). For the particular case

when X0 = Y0 = Z0 the relationship is simple and is pre-

sented in the form

tanðh0Þ ¼
r3½r2

0 � aðR0 � 1Þ

r0½r2

3 þ aðR0 � 1Þ
 for bX 0 ¼ bY 0 ¼ bZ 0 ð26Þ

r0 ¼
r3

2½r3 cosðh0Þ þ r0 sinðh0Þ

eX 0 for bX 0 ¼ bY 0 ¼ bZ 0

ð27Þ

where bX 0 ¼ X 0 � 1; bY 0 ¼ Y 0 � 1 and bZ 0 ¼ Z0 � 1.

A similar analytical method was attempted for the

slightly modified (transformed) but equivalent system

(14)–(16). It was anticipated that the amplitude equation

for the modified formulation takes the form

dr
dt

¼ s½n � r2
r þ g ð28Þ

where g(r0) is a parameter that was expected to depend

on initial conditions. Eq. (28) suggests the existence of

an ‘‘imperfect Hopf bifurcation’’, that might probably

lead to a smooth rather than a sudden transition,

depending on the initial conditions. The convective fixed
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points of the modified system (14)–(16) were evaluated

as eX S ¼ �1� X 0; eY S ¼ �1� Y 0, and eZ S ¼ 1� Z0,

and the corresponding expansion of the modified formu-

lation was similar to Eq. (17) in the form

½eX ; eY ; eZ 
 ¼ ½eX S; eY S; eZ S
 þ e½eX 1; eY 1; eZ 1

þ e2½eX 2; eY 2; eZ 2
 þ e3½eX 3; eY 3; eZ 3
 þ � � � ð29Þ

followed by identical expressions for R = R0(1 + e2) and
d/dt! d/dt + e2d/ds. The only difference between the

modified and original systems is the inclusion of the ini-

tial conditions into the equations leading to homogene-

ous initial conditions in the modified system, i.e.eX 0 ¼ eY 0 ¼ eZ 0 ¼ 0. Following the same procedure as

for the original system yields a hierarchy of ordinary dif-
Fig. 3. Trajectory of differences between the ‘‘modified system’’ and

R = 21. (a)–(c) Projection of trajectory�s data points on the planes DZ
ferential equations at the different orders that includes

explicitly the initial conditions as well as the stationary

points. When substituting the stationary points eX S ¼
�1� X 0, eY S ¼ �1� Y 0, and eZ S ¼ 1� Z0, into the

equations at all orders it turns out that the initial condi-

tions disappear from all equations, resulting in equa-

tions that are identical to the original system.

Therefore, we conclude that the initial conditions affect

only the stationary points as well as the compatibility

condition between the analytical and computational

solutions. The Hopf bifurcation at the transition point

remains perfect and the transition point is affected by

the initial conditions as presented in the following

section.
‘‘original system’’ solutions corresponding to Dt = 10�3, and

= 0, DY = 0 and DX = 0, respectively, for R = 21.
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4. Results and discussion

The objective in the presentation of the following re-

sults is to demonstrate the appearance of the transition

at particular values of R = Rt and compare the compu-

tational and analytical values of Rt. The latter corre-

spond to Eq. (25), for different initial conditions that

are consistent with the weak non-linear solution, i.e.

they satisfy the compatibility conditions (26) and (27).

A sequence of computations was performed in order

to evaluate these transitional R values. In all computa-

tions the values of c = 0.5 and a = 5 were used. They

yield the following corresponding parameter values

u = �2.4, R0 = 25, r0 ¼
ffiffiffiffiffi
60

p
and r3 = �8. The results

are presented in Fig. 2 where the continuous curve rep-
Fig. 4. Trajectory of differences between the ‘‘modified system’’ and

R = 75. (a)–(c) projection of trajectory�s data points on the planes DZ
resents the analytical solution expressed by Eq. (25)

while the different dots represent the numerical results

corresponding to different initial conditions. The very

good agreement between the analytical and numerical

solutions in the neighborhood of the convective fixed

point (i.e. jr0j � 1) is evident from Fig. 2. Actually for

jr0j < 0.2 the numerical and analytical solutions overlap.

As the initial conditions move away from the convec-

tive fixed point and the value of jr0j increases the analyt-
ical solution departs from the numerical results, which

reconfirms the validity of the weak non-linear solution

in the neighborhood of a convective fixed point and its

breakdown far away from this point. In addition, the

numerical results move apart from each other as well,

when jr0j increases. The reason for this latter departure
‘‘original system’’ solutions corresponding to Dt = 10�3, and

= 0, DY = 0 and DX = 0, respectively.
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is the fact that the compatibility of the initial conditions

in terms of r0 was also derived based on the weak non-

linear solution at order O(e). Therefore, as the latter

solution loses accuracy when jr0j increases, the compat-

ibility conditions lose accuracy as well. The departure

between the numerical results and the analytical ones

is clearly not symmetrical with respect to r0 = 0. While

the O(e) weak non-linear solution is symmetrical with re-

spect to r0 = 0, due to its elliptical shape, there is no rea-

son to expect this symmetry from a numerical solution

as one moves away from the fixed point (the symmetry

is kept for jr0j � 1). Actually in the neighborhood of

jr0j = 0.5 one may expect to find the homoclinic orbit.

Its shape is by far different than the one of an ellipse

(see Vadasz and Olek [15]). Both improvement of accu-

racy and loss of symmetry are expected if higher order

corrections are considered.
Fig. 5. Trajectory of differences between the ‘‘modified system’’ and

R = 120. (a)–(c) Projection of trajectory�s data points on the planes D
The last objective of the present paper is to compare

the numerical results obtained from the modified but

equivalent formulation of the problem (‘‘modified sys-

tem’’), Eqs. (14)–(16) with the corresponding computa-

tional results (‘‘original system’’), obtained via the

Adomian decomposition method ([3–5]) from Eqs. (8)–

(10). The numerical solution to the modified formulation

of the problem was accomplished to double precision by

using the fifth and sixth order Runge–Kutta–Verner

method from the IMSL Library (DIVPRK) [22] up to

a desired tolerance for error control specified by the

parameter tol. The adopted procedure was to solve each

system separately to double precision, and evaluate the

difference between the two solutions at all values of t

up to tmax = 210. The final step was plotting this differ-

ence in results as projections of the trajectory of differ-

ences on the planes DZ = 0 (DY � DX plane), DY = 0
‘‘original system’’ solutions corresponding to Dt = 10�3, and

Z = 0, DY = 0 and DX = 0, respectively.
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(DZ � DX plane) and DX = 0 (DZ � DY plane), where

DX = Xmod. � Xorig., DY = Ymod. � Yorig. and DZ =

Zmod. � Zorig.. The indices ‘‘mod.’’ and ‘‘orig.’’ stand

for representing the ‘‘ modified system’’ and the ‘‘origi-

nal system’’ results, respectively.

The decomposition method [3–5] provides an analyt-

ical solution in the form of an infinite power series. The

practical need to evaluate numerical values from the infi-

nite power series suggests its use as an algorithm for the

approximation in a sequence of time intervals Dt = tp �
tp�1. The value of Dt was used as an accuracy control

parameter for the ‘‘original system’’, while the value of

tol was used as an accuracy control parameter for the

‘‘modified system’’. The results of the comparison be-

tween the modified and original systems corresponding

to values of Dt = 10�3 and tol = 10�12, and for R = 21,

are presented in Fig. 3(a)–(c). From these figures it is evi-

dent that the difference between the solutions is of the

order of magnitude 10�12, quite close to machine preci-

sion accuracy. These results correspond to steady con-

vection, i.e. subcritical conditions (R = 21). Naturally,

one cannot expect similar results for supercritical condi-

tions when the solution is chaotic, because then two

nearby trajectories diverge (at least one their Lyapunov

exponents is positive). In order to compare the results

between the modified and the original systems at super-

critical conditions we use the existence of periodic win-

dows within the chaotic regime and evaluate the

comparison at values of R corresponding to these peri-

odic windows. The first wide periodic window appears

around R = 75 (see Vadasz and Olek [1]). The results

of the comparison between the modified and original

systems corresponding to R = 75 are presented in Fig.

4(a)–(c). From the figure it is evident that the difference

between the solutions although larger than the previous

case is still quite small, i.e. of an order of magnitude of

10�8. The differences in the results of the ‘‘modified’’ and

‘‘original’’ systems for another periodic regime at

R = 120 is presented in Fig. 5(a)–(c) in terms of projec-

tions of trajectories of differences on the DZ = 0 and

DY = 0 and DX = 0 planes. The figure shows that the dif-

ference between the solutions is also of the order of mag-

nitude of 10�8. These results indicate that numerically

both systems produce results that are sufficiently accu-

rate to be representative in the comparison with analyt-

ical solutions as previously presented. The shapes

appearing in the figures in terms of differences are simi-

lar and they retain this similarity under scale reduction

and magnification.
5. Conclusions

The derivation of a set of modified, but equivalent,

system of equations that might reveal the nature of the

transition process in the weak turbulent regime was
investigated and tested for accuracy. The results show

that the numerical solution to the modified system pro-

duces results that are sufficiently accurate when com-

pared to the original system. The transition values of

the Rayleigh number were compared against analytical

predictions revealing again a very good match. The

anticipation that the analytical solution of the ‘‘modi-

fied’’ system might reveal a smooth rather than a sudden

transition from steady convection to weak-turbulence

via an imperfect Hopf bifurcation was not fulfilled.

The Hopf bifurcation of the ‘‘modified’’ system re-

mained perfect. The transition is therefore sudden.
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